Idiotypic immunization induces immunity to mutated p53 and tumor rejection

PEDRO J. RUIZ1,2,3, ROLAND WOLKOWICZ2,3, ARI WAISMAN4, DAVID L. HIRSCHBERG2, PNINA CARMI2, NETTA ERZG2,3, HIDEKI GARREN1, JOHANNES HERKEL1, MARCELA KARPU1, LAWRENCE STEINMAN1,3, VARDA ROTTER2 & IRUN R. COHEN3

1Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, 94305-5429, USA
2Departments of Cellular and Molecular Biology, and 3Immunology, The Weizmann Institute for Science, Rehovot, 76100, Israel
Correspondence should be addressed to L.S.

The p53 molecule might serve as a common tumor-associated antigen, as the tumor suppressor gene p53 is mutated and the p53 protein is often over-expressed in tumor cells. We report that effective immunity to p53 can be induced through an idiotypic network by immunization of mice with a monoclonal antibody (PAb-240) specific for mutated p53, or with a peptide derived from the complementarity determining region (CDR) 3 of the variable domain of the light chain (VL) of this antibody. The immunized mice produced IgG antibodies to p53 and mounted a cytotoxic reaction to a tumor line bearing mutated p53. The idiotypically immunized mice were resistant to challenge with the tumor cells. Thus antibodies to p53 might serve as immunogens for activating resistance to some tumors. At the basic level, these findings indicate that a network of p53 immunity may be organized naturally within the immune system.

Mutations of p53 have been detected in about 70% of colon cancers, 30-50% of breast cancers, 50% of lung adenocarcinomas and almost all small-cell carcinomas of the lung, among other tumors. The prevalence of p53 mutations in cancers of different origins can be explained by the function of p53 as a tumor-suppressor gene. Thus, inactivation of the p53 protein by mutations or other factors could enable the growth of tumor cells that might otherwise be led into growth arrest or apoptosis by the action of wild-type p53 (ref. 2). Mutated p53 protein accumulates in tumor cells, and might serve as a tumor-associated antigen for immunotherapy. Indeed, attempts have been made to induce tumor immunity using mutated peptide sequences of p53 (refs. 3, 4). However, p53 is a self antigen, and mechanisms of self tolerance could reduce the immunogenicity even of mutated p53.

We reasoned that immunity to p53 might be inducible using an anti-p53 antibody as an idiotypic immunogen, in place of p53 itself. In the terminology of idiotypic networks, an antibody to an antigen, (that is, antibody Ab1) (ref. 5) might function as an immunogen and elicit a secondary antibody (Ab2) specific to Ab1 (ref. 5). Ab2, in turn, can spontaneously induce a third Ab, (Ab3; ref. 5). Since Ab1 might bind both the antigen epitope and Ab2, Ab2 might mimic the structure of the antigenic epitope. Hence, Ab3, which is activated by Ab2, might also recognize the original antigen, and so function, like Ab1, as an antibody to the antigen. In other words, an epitope of the target antigen and an epitope of Ab2 might look alike, at least to Ab1, and Ab1 and Ab3 might act alike in recognizing the antigen. Attempts have been made to use Ab2 antibodies that mimic tumor antigens to induce Ab3 anti-tumor immunity. Anti-idiotypic networks however, can be induced by Ab1 as well as Ab2. Rather than using a classic Ab2 approach, we decided to explore the possibility of using an Ab1 anti-p53 antibody to induce active immunity to p53. BALB/c mice immunized with a BALB/c monoclonal antibody to mutated p53, PAb-240 (Ab1), developed their own IgG antibodies to mutated p53 (Ab3) (Fig. 1). In contrast, no antibodies to mutated p53 were induced by immunization with the control monoclonal antibody 9E10, specific for the oncoprotein myc.

The singular specificity of an antibody molecule, its idiotype, is formed by the CDRs that create its unique antigen-binding site. CDR peptides have been used in the past to induce immunity to reovirus. To test whether idiotypic determinants of PAb-240 (Ab1) could induce anti-p53 immunity, we cloned and sequenced the variable (V) domains of the light (L) and heavy (H) chains of Pab-240, and synthesized peptides corresponding to the Vl CDR3 and VH CDR3 segments. These CDR3 peptides of PAb-240 (Ab1) were used as immunogens. The VL CDR3 peptide, but not the VH CDR3 peptide, induced IgG anti-p53 antibodies (Fig. 1). Thus, the anti-p53 antibodies were likely to have been induced by activation of an idiotypic network response.

As the VL CDR3 peptide was synthesized as a linear amino acid sequence, it can have little or no structural similarity to the folded shape of the antigen-combining site of the intact PAb-240 molecule. However, the CDR domains may form a reverse turn, and thus have some conformational similarity with their own linear sequence. As the bare CDR3 peptide is not an antibody to p53, the induction of anti-p53 by the VL CDR3 peptide of Ab1 cannot be attributed simply to structural complementarity. T cells recognize processed, linear peptides and not native, folded protein conformations; hence, we suspected that anti-idiotypic T cells might have a role in the p53 idiotypic network.

Effector T cells can be detected functionally by cytotoxicity to antigen-bearing target cells. We tested whether immunization with the VL CDR3 peptide of Pab-240 might lead to the lysis of the Meth A tumor cell line, a tumor of BALB/c origin bearing a p53 mutation. The CDR3 peptide induced significantly ($P < 0.001$) more lysis of the Meth A cells than did immunization with an immunogenic peptide of a virus, HS VP16 (Fig. 2; ref. 11). Thus, it is likely that cytolytic T cells were activated by the idiotypic immunization. The activity of T cells in
the pS3 network is also indicated by the fact that the Ab3 antibodies to pS3 were of the IgG isotype, an antibody type dependent on the activation of helper T cells12.

Although we have not yet isolated or characterized the T cells that might recognize the VL CDR3 peptide, the pS3 network seems to be effective. Immunization to whole Pab240, but not to 9E10, led to resistance to challenge with Meth A tumor cells implanted in vivo (Fig. 3a). The VL CDR3 peptide, but not the VH CDR3 peptide of Pab-240, could also immunize mice against the Meth A tumor (Fig. 3b). The effects were long lasting; rejected tumors did not recur during a two-month period of observation.

In general, immunization to anti-pS3 monoclonal antibody mutated epitopes such as those on Pab-240 protects against Meth A tumors, which express pS3. We have analyzed several peptides from the CDR regions of antibodies against wild-type pS3 and found them to be in effective in protection from Meth A tumors. However, certain epitopes of antibodies directed against wild-type pS3 afford some protection (data not shown), though it is significantly less than that by providing immunization with epitopes of antibodies such as Pab-240, which is directed against mutated epitopes.

On a practical level, our results indicate that active immunity to mutant pS3 can be induced by an idiotypic network triggered by an anti-pS3 antibody or by a peptide fragment of the antibody. The need to isolate and purify immunogenic pS3 can be avoided. Moreover, it seems that the network can activate both helper and effector T cells. We are now attempting to isolate and characterize these cells.

At a basic level, it is of fundamental interest that an idiotypic network appears to be centered on pS3. The ability of a CDR3 peptide of an Ab1 antibody to activate pS3 immunity, tumor cell lysis and tumor inhibition indicates that the pS3 network may be organized within the immune repertoire prior to immunization. Had the VL CDR3 peptide served merely as a primary immunogen, the response should have been limited to the peptide alone, as would be expected for any other peptide immunization. The linear VL CDR3 peptide of Pab-240 by itself should be unrelated to pS3, both structurally and chemically. The VL CDR3 peptide may have already been associated with pS3 through a pre-existing lymphocyte network that could account for the induction of pS3 immunity13. The CDR peptide may have induced an antibody (Ab2) that resembles pS3 in some way. In either case, there is something unique about the pS3 network, because Ab3 antibodies do not arise after every Ab1 immunization. As yet, we do not know how the pS3 network organizes itself and how it might include mutated pS3. It has been suggested that at least some mutated pS3 molecules may assume a conformation that is also assumed by wild-type pS3 when it is in a physiologically inactive state14. In other words, mutated pS3 may not be structurally foreign to the immune system. Study of the pS3 idiotypic network should help clarify the possible role of natural pS3 immunity in immunosurveillance.

Methods

Mice. Inbred mouse strain BALB/c was obtained from Olac (Oxon, UK). Female mice were used 8–10 weeks of age.

Monoclonal antibodies. The anti-pS3 mouse monoclonal antibody Pab240 (lgG1/κ), specific for a mutated conformation of the pS3 molecule15 was raised in ascites fluid and purified by protein A affinity chromatography followed by dialysis in PBS. The anti-myc oncoprotein antibody 9E10 (lgG1/κ) (ref. 16) was used as a control antibody.

Cloning and sequencing of antibody V regions. Total RNA from anti-pS3 monoclonal antibody hybridoma secreting cells was isolated using the TRI Reagent (Molecular Research Center, Cincinnati, Ohio), according to the manufacturer’s instructions. Briefly, 1–2 x 10⁶ cells were precipitated, washed and homogenized in 1 ml reagent. After homogenization, RNA was extracted with phenol/chloroform and precipitated with ethanol. Half of the RNA was then used for cDNA preparation. For preparation of cDNA, poly(dT)₃ primer (Boehringer) was used. First-strand cDNA was synthesized using reverse transcriptase (USB, Cleveland, Ohio). The cDNA was subjected to PCR amplification using forward primers located in the constant region or in the J region, and backward primers located in the V region17; were used for amplification using Taq DNA polymerase (Promega). PCR products were cloned in the plasmid pGem (Promega) and sequencing was carried out using automated sequencing (Applied Biosystems), and analyzed using Applied Biosystems and GCG package programs. To avoid misincorporation of Taq polymerase, DNA amplification was performed twice, from two RNA preparations. Sequencing was carried out using primers specific to both the 3’ and 5’ ends. The sequences from all reactions were found to be identical for each PCR product.

Synthetic Peptides. The CDR3-based peptides of the VL chain, YYCQHIREL TSR EGGPS, and VH chain YYCAR 111 11 2 AM FAM D LWQQQT (CDRs are underlined) from Pab-240 were prepared with an automated synthesizer (Applied Biosystem model 430A) using the manufacturer’s protocols for t butylotyrosine coupling. Peptide purity was evaluated by analytical...
Tumor cells. The Meth A tumor is a transplantable 3-methylcholanthrene-induced sarcoma of BALB/c origin that has three mutations in the p53 coding sequence. The cells were grown in RPMI media containing 10% heat-inactivated fetal calf serum (FCS), and passed through BALB/c mice to select for tumorigenicity.

Immunization. Mice were immunized intradermally in the hind footpads with 20 μg of monoclonal antibody in a 0.1 ml emulsion 1:1 in Complete Freund’s Adjuvant (CFA; Difco Laboratories, Detroit, Michigan). A booster injection with the same amount of the monoclonal antibody in PBS was given two weeks later by the same route. For immunization with the CDR peptides mice were injected subcutaneously in the dorsal flank with 0.1 ml of the peptide in a 0.1 ml emulsion 1:1 in Incomplete Freund’s Adjuvant (IFA; Difco laboratories). Mice were bled 10 days after the boost, and the sera were tested for specific antibodies.

Antibody detection by ELISA. Flat bottom maxi-sorb plates (Nunc) were coated with 50 μl per well of mutant p53 at a concentration of 5 μg/ml. Recombinant proteins were prepared as described. After incubation with antigen, the plates were washed and blocked over night with 5% fetal calf serum (BioLab, Jerusalem, Israel) in PBS. Test sera diluted 1:320 were then added for 90 min, followed by incubation for 75 min with 50 μl per well of alkaline phosphatase-conjugated goat anti-mouse IgG. Fc fragment (Jackson Immunoresearch Laboratories, West Grove, Pennsylvania). The plates were washed, incubated with the substrate p-Nitrophenyl Phosphate Disodium (Sigma) and read using an ELISA reader at 405 nm.

Cytotoxicity assay. Cytolysis was measured in a DNA fragmentation assay by [3H]thymidine release as described. Briefly, spleen cells from BALB/c mice were taken ten days after the second immunization with 0.1 mg of the CDR peptide in IFA. Cells were cultured at a concentration of 10 x 10^6 cell per ml in 50 ml of enriched media RPMI-1640 containing 2 mM glutamine, 1 mM sodium pyruvate, non-essential amino acids, 100 U/ml of penicillin, 0.25 μg/ml of fungison (Life Technologies), 5 x 10^{-5} M 2-mercaptoethanol (Fluka), 10 mM HEPES buffer (Sigma) supplemented with 10% fetal calf serum (Life Technologies) and in the presence of 10 μg/ml of the peptide. After five days of incubation, cells were harvested and various numbers of effector cells were added to 1 x 10^6 target cells that were [3H]thymidine-labeled with a final volume of 0.2 ml of enriched media per well in 96-well U-bottom plates. After four hours of incubation, samples were harvested and Radioactivity counted. The percentage of specific cytotoxicity for each experimental point was calculated using the average values of the triplicates from experimental (E) and spontaneous release (S) wells as follows: % cytotoxicity = (S-E/S) x 100.

Meth A tumor cell challenge. Immunization of BALB/c mice was performed as described above. Ten days after the boost, the mice were injected intradermally in the right-lower abdominal quadrant, with 1 x 10^6 Meth A cells. Tumor growth was observed for eight weeks; the tumors were measured by their maximum and minimum diameters using a caliper. Disappearance of the tumor mass constituted rejection.

Acknowledgments
I.R. Cohen is the incumbent of the Mauerberger Chair of Immunology and the Director of the Robert Koch-Minerva Center for Research in Autoimmune Diseases. The work was supported by grants from the Minerva Foundation and from the National Institutes of Health.

RECEIVED 6 FEBRUARY; ACCEPTED 1 MAY, 1998